SHARPEn your portfolio

In our last post, we started building the intuition around constructing a reasonable portfolio to achieve an acceptable return. The hero of our story had built up a small nest egg and then decided to invest it equally across the three major asset classes: stocks, bonds, and real assets. For that we used three liquid ETFs (SPY, SHY, and GLD) as proxies. But our protagonist was faced with some alternative scenarios offered by his cousin and his co-worker; a Risky portfolio of almost all stocks and a Naive portfolio of 50/50 stocks and bonds.

Portfolio starter kit

Say you’ve built a little nest egg thanks to some discipline and frugality. And now you realize that you should probably invest that money so that you’ve got something to live off of in retirement. Or perhaps you simply want to earn a better return than stashing your cash underneath your bed, I mean your savings account. How do you choose the assets? What amount of money should you put into each asset?

Skew who?

In our last post on the SKEW index we looked at how good the index was in pricing two standard deviation (2SD) down moves. The answer: not very. But, we conjectured that this poor performance may be due to the fact that it is more accurate at pricing larger moves, which occur with greater frequency relative to the normal distribution in the S&P. In fact, we showed that on a monthly basis, two standard deviation moves in the S&P 500 (the index underlying the SKEW) occur with approximately the same frequency as would be expected in a normal distribution.

OMG O2G!

The oil-to-gas ratio was recently at its highest level since October 2013, as Middle East saber-rattling and a recovering global economy supported oil, while natural gas remained oversupplied despite entering the major draw season. Even though the ratio has eased in the last week, it remains over one standard deviation above its long-term average. Is now the time to buy chemical stocks leveraged to the ratio? Or is this just another head fake foisted upon unsuspecting generalists unaccustomed to the vagaries of energy volatility?

SKEWed perceptions

The CBOE’s SKEW index has attracted some headlines among the press and blogosphere, as readings approach levels not see in the last year. If the index continues to draw attention, doomsayers will likely say this predicts the next correction or bear market. Perma-bulls will catalogue all the reasons not to worry. Our job will be to look at the data and to see what, if anything, the SKEW divines. If you don’t know what the SKEW is, we’ll offer a condensed definition.

Null hypothesis

In our previous post we ran two investing strategies based on Apple’s last twelve months price-to-earnings multiple (LTM P/E). One strategy bought Apple’s stock when its multiple dropped below 10x and sold when it rose above 20x. The other bought the stock when the 22-day moving average of the multiple crossed above the current multiple and sold when the moving average crossed below. In both cases, annualized returns weren’t much different than the benchmark buy-and-hold, but volatility was, resulting in significantly better risk-adjusted returns.

Valuation hypothesis

In our last post on valuation, we looked at whether Apple’s historical mutiples could help predict future returns. The notion was that since historic price multiples (e.g., price-to-earnings) reflect the market’s value of the company, when the multiple is low, Apple’s stock is cheap, so buying it then should produce attractive returns. However, even though the relationship between multiples and returns was significant over different time horizons, its explanatory power was pretty low.

Price is what you pay

Stock analysts are usually separated into two philosophical camps: fundamental or technical. The fundamental analyst uses financial statements, economic forecasts, industry knowledge, and valuation to guide his or her investment process. The technical analyst uses prices, charts, and a whole host of “indicators”. In reality, few stock analysts are purely fundamental or technical, usually blending a combination of the tools based on temperament, experience, and past success. Nonetheless, at the end of the day, the fundamental analyst remains most concerned with valuation, while the technical focuses on price action.

Playing with averages

In a previous post we compared the results from employing a 200-day moving average tactical allocation strategy to a simple buy-and-hold investment in the S&P500. Over the total period, the 200-day produced a higher cumulative return as well as better risk-adjusted returns. However, those metrics did erode over time until performance was essentially in line or worse since 1990. While there’s still some more work to do on understanding the drivers of performance for the 200-day strategy.

Calling covered data

In our last post on covered calls we introduced the CBOE’s buy-write index (or BXM), whose underlying is the S&P500 index. We looked at some of the historical data, made a few comparisons between the index and the S&P, and noted that there was a report that analyzed the buy-write index. In this post, we’ll look at some of the findings from that report, which can be found on the CBOE’s website.